Role of adenosine in local metabolic coronary vasodilation.

نویسندگان

  • Toyotaka Yada
  • Keith Neu Richmond
  • Richard van Bibber
  • Keith Kroll
  • Eric O Feigl
چکیده

Adenosine has been postulated to mediate the increase in coronary blood flow when myocardial oxygen consumption is increased. The aim of this study was to evaluate the role of adenosine when myocardial oxygen consumption was augmented by cardiac paired-pulse stimulation without the use of catecholamines. In 10 anesthetized closed-chest dogs, coronary blood flow was measured in the left circumflex coronary artery, and myocardial oxygen consumption was calculated using the arteriovenous oxygen difference. Cardiac interstitial adenosine concentration was estimated from coronary venous and arterial plasma adenosine measurements using a previously described multicompartmental, axially distributed mathematical model. Paired stimulation increased heart rate from 55 to 120 beats/min, increased myocardial oxygen consumption 104%, and increased coronary blood flow 92%, but the estimated interstitial adenosine concentration remained below the threshold for coronary vasodilation. After adenosine-receptor blockade with 8-phenyltheophylline (8-PT), coronary blood flow and myocardial oxygen consumption were not significantly different from control values. Paired-pulse pacing during adenosine-receptor blockade resulted in increases in myocardial oxygen consumption and coronary blood flow similar to the response before 8-PT. Coronary venous and estimated interstitial adenosine concentration did not increase to overcome the adenosine blockade by 8-PT. These results demonstrate that adenosine is not required for the local metabolic control of coronary blood flow during pacing-induced increases in myocardial oxygen consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological role of adenosine and its receptors in tissue hypoxia-induced

It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...

متن کامل

Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs.

BACKGROUND Inhibition of nitric oxide (NO) synthesis results in very little change in coronary blood flow, but this is thought to be because cardiac adenosine concentration increases to compensate for the loss of NO vasodilation. Accordingly, in the present study, adenosine measurements were made before and during NO synthesis inhibition during exercise. METHODS AND RESULTS Experiments were p...

متن کامل

Feedforward sympathetic coronary vasodilation in exercising dogs.

The hypothesis that exercise-induced coronary vasodilation is a result of sympathetic activation of coronary smooth muscle beta-adrenoceptors was tested. Ten dogs were chronically instrumented with a flow transducer on the circumflex coronary artery and catheters in the aorta and coronary sinus. During treadmill exercise, coronary venous oxygen tension decreased with increasing myocardial oxyge...

متن کامل

Association of G22A variant of Adenosine Deaminase gene with coronary in-stent restenosis in coronary artery patients receiving drug-eluting stent

In-stent restenosis (ISR) is regarded as the main problem in the utilization of stents in the treatment of coronary artery atherosclerotic stenosis in percutaneous coronary intervention (PCI). This study investigated the possible role of the G22A variant of the Adenosine Deaminase gene (ADA) in the development of ISR. In this study, 91 patients who underwent PCI were divided into two groups of ...

متن کامل

K(ATP)(+) channels, nitric oxide, and adenosine are not required for local metabolic coronary vasodilation.

The role of ATP-sensitive K(+) (K(ATP)(+)) channels, nitric oxide, and adenosine in coronary exercise hyperemia was investigated. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus and instrumented with a flow transducer on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 276 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999